
618 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

Achieving High Scalability Through Hybrid
Switching in Software-Defined Networking

Hongli Xu , Member, IEEE, He Huang, Member, IEEE, Shigang Chen, Fellow, IEEE,

Gongming Zhao , and Liusheng Huang, Member, IEEE

Abstract— Traditional networks rely on aggregate routing and
decentralized control to achieve scalability. On the contrary,
software-defined networks achieve near optimal network perfor-
mance and policy-based management through per-flow routing
and centralized control, which, however, face scalability challenge
due to: 1) limited ternary content addressable memory and
on-die memory for storing the forwarding table and 2) per-
flow communication/computation overhead at the controller. This
paper presents a novel hybrid switching (HS) design, which
integrates traditional switching and software-defined network-
ing (SDN) switching for the purpose of achieving both scalability
and optimal performance. We show that the integration also leads
to unexpected benefits of making both types of switching more
efficient under the hybrid design. We also design the general
optimization framework via HS and propose an approximation
algorithm for load-balancing optimization as a case study. Testing
and numerical evaluation demonstrate the superior performance
of HS when comparing with the state-of-the-art SDN design.

Index Terms— Software defined networks, scalable routing,
flow table constraint, load balancing, approximation.

I. INTRODUCTION

SCALABILITY has been a core issue in the history of large
network development. The conventional wisdom holds

two design principles: aggregate routing paths and distributed
control. Modern switches/routers forward packets from incom-
ing ports to outgoing ports via switching fabric. The data plane
uses ASIC hardware and on-die memory (such as SRAM) to
process packets in real time at high speed. The on-die memory
is typically a few megabytes. Increasing on-die memory is
technically feasible, but it comes with a much higher price tag

Manuscript received January 20, 2017; revised August 3, 2017 and
October 27, 2017; accepted December 28, 2017; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor S. Rao. Date of publication
January 22, 2018; date of current version February 14, 2018. This work was
supported in part by the NSFC under Grant 61472383, Grant U1709217,
Grant 61728207, and Grant 61472385 and in part by the Natural Science
Foundation of Jiangsu Province in China under Grant BK20161257. The work
of H. Huang was supported in part by the NSFC under Grant 61572342
and Grant 61672369 and in part by the NSF of Jiangsu Province under
Grant BK20151240 and Grant BK20161258. The work of S. Chen was
supported by the NSF under Grant STC-1562485 and Grant CNS-1719222.
This paper was presented at the IEEE INFOCOM 2017 [1]. (Corresponding
author: He Huang.)

H. Xu, G. Zhao, and L. Huang are with the School of Computer Science and
Technology, University of Science and Technology of China, Hefei 230027,
China, and also with the Suzhou Institute for Advanced Study, University
of Science and Technology of China, Suzhou 215123, China (e-mail:
xuhongli@ustc.edu.cn; zgm1993@mail.ustc.edu.cn; lshuang@ustc.edu.cn).

H. Huang is with the School of Computer Science and Technology, Soochow
University, Suzhou 215006, China (e-mail: huangh@suda.edu.cn).

S. Chen is with the Department of Computer and Information of Science
and Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
sgchen@cise.ufl.edu).

Digital Object Identifier 10.1109/TNET.2018.2789339

and access time is longer. There is a huge incentive to keep
on-die memory small because smaller memory can be made
faster and cheaper. To make the matter more challenging,
limited on-die memory may have to be shared among
routing/performance/measurement/security functions that are
implemented on the same chip. The amount of on-die memory
allocated for storing the forwarding (or routing) table will be
limited, which makes per-flow routing (i.e., one table entry
for each flow) unscalable to a large network with millions
of concurrent flows. To address this scalability problem,
the classical design principle is to perform destination-based
aggregate routing (instead of per-flow routing), where all
flows with the same destination address or address prefix
will share the same path. The second design principle is to
decentralize the routing control function in order to avoid a
single point of failure or performance bottleneck.

The emergence of software-defined networking (SDN)
[2]–[8] has shattered both principles. It uses a centralized
controller to determine per-flow paths and deploy these paths
to the switches’ forwarding tables. With the network-wide
information at one place, the centralized control makes it
far easier to enforce global policies and achieve optimal
traffic management. These benefits outweigh the scalability
concern in the compromise made by the SDN design. But the
scalability problem will not go away, under per-flow routing
and centralized control. Today’s SDN switches typically have
a few thousands of entries in their on-die flow tables. Even
the high-end Broadcom Trident2 chipset supports only 16K
forwarding rules [6]. When there are too many flows to fit in
the flow table, we will have to reject some flows [6], replace
existing flows in the table with new flows (which causes churns
and increases the load of the controller to repetitively deploy
paths for the same flows), or bring aggregate routing back.

Forwarding rules with wildcards were proposed for
aggregate routing [5]. But wildcard rules can only be
implemented through TCAM (Ternary Content Addressable
Memory), which is small, costly and energy-hungry. The small
number of wildcard rules may result in aggressive aggregation
when facing a large number of excess flows, whereas the
benefits of SDN rest upon its ability of differentiating arbitrary
individual flows. Moreover, there is a lack of systematic
studies on how to construct and manage optimal wildcard
rules in a dynamic, heavily loaded network, which is a
challenging problem. Therefore, alternative or complementary
solutions to the scalability problem are under call.

If traditional aggregate routing and decentralized control
help scalability while SDN helps performance with centralized
control, our idea is to integrate them for hybrid switching,
which achieves the benefits of both worlds and is not subject
to the restriction of TCAM [1]. This paper presents a novel
hybrid switching design. On the one hand, it leverages the

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:25:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0003-1311-8908

XU et al.: ACHIEVING HIGH SCALABILITY THROUGH HS IN SDN 619

mature methods of traditional switching to achieve scalability
by avoiding per-flow communication/computation overhead to
the controller and reducing the number of forwarding rules
needed to support a large number of flows. On the other hand,
it exploits the flexibility of SDN switching to achieve near
optimal network performance without overflowing the for-
warding table. More interestingly, we show that the integration
of traditional switching and SDN switching brings unexpected
benefits to each other. The SDN’s centralized control will
help implement traditional switching much more efficiently.
It can also centrally integrate the management/security policy
requirements into the computation of traditional switching/
routing tables so that the paths comply with the policies. In the
meanwhile, with a hybrid deployment design, we show that
traditional aggregate routing will help to greatly reduce the
overhead of deploying SDN paths by significantly reducing
the number of forwarding rules needed. We also discuss
how to perform per-flow traffic measurement without using
the OpenFlow counters in the forwarding table, which is
important in our hybrid switching design where many (or
even most) flows are not in the table. Finally, we give a case
study on how to perform global optimization at the controller
for flow re-routing under hybrid switching. Our numerical
evaluation shows that the proposed hybrid switching design
outperforms wildcard-based DevoFlow [5] by significantly
lowering the number of forwarding rules under the same traffic
conditions or achieves much better network performance under
the same forwarding-table size.

The rest of this paper is organized as follows. Section II
introduces the switching, routing, and hybrid schemes.
We present the design of the hybrid switching in Section III.
Section IV describes the general optimization framework vis
HS and designs an efficient algorithm for a case study of load-
balancing optimization. The testing and simulation results are
presented in Section V. Section VI discusses the related work.
Section VII draws the conclusion.

II. SWITCHING, ROUTING, AND HYBRID

A. Traditional Switching

A traditional Ethernet switch uses a switch table to learn
reachability information from the packets (or data frames in
layer-2 terminology) that it receives. When a switch receives a
frame from a port, it learns that the source MAC address in the
frame header can be reached from that port. This information
is stored in the switch table where each entry contains an MAC
address and a port number.

If a switch receives a frame whose destination MAC address
is in the switch table, the switch will forward the packet to
the corresponding port. Otherwise, it will forward the frame to
all ports except for the port from which the frame is received,
generating a broadcast. For two-way communication between
two hosts, broadcast will happen only once because the first
exchange between the hosts will let all switches along the
communication path learn how to reach them. To achieve high
throughput, the switch table is often implemented as a hash
table in SRAM [9].

B. Traditional Routing

Routers or layer-3 switches are able to perform distributed
path selection through routing protocols such as OSPF [10] for
intra-domain routing or BGP [11] for inter-domain routing.

The modern router architecture consists of a control plane,
where the routing protocols and management functions are
implemented, and a data plane, which handles packet forward-
ing at high speed. To achieve high throughput, the routing
table can be cached in on-die SRAM at the arrival network
interface. Each routing-table entry consists of a destination
address prefix, an output port, and other fields.

The path selection is coarse-grained. It is destination-based,
not flow-based, which helps reduce the table size. There may
be many flows from a source network to a destination network.
They will all follow the same path because they share the
same destination address prefix. This limits the flexibility in
offering quality of service, balancing load, utilizing the under-
used alternative paths, or performing flow-level management
policies.

C. Software-Defined Switching

Comparing with traditional switching/routing, a fundamen-
tal difference of the SDN architecture is its centralized control.
An SDN network consists of three types of devices: a central
controller, SDN switches that are inter-connected to form a
network, and end hosts that are connected to the switches.
An SDN switch has a forwarding table specifying per-flow
paths. The forwarding table is typically implemented in TCAM
to support wildcard fields and parallel lookup of all table
entries. For exact rules without wildcards, they may be imple-
mented in TCAM or SRAM. Although we view the forwarding
table logically as a single table, it may be implemented by
multi-tiered tables [12].

When a switch receives a packet, it matches the fields in the
packet’s headers against the table. If there is a matching entry,
the packet is handled according to the instruction field, which
may drop, log, or forward the packet to the output port. When
there is no matching entry, the switch sends a request carrying
the packet header to the controller which selects a path for the
flow and installs proper rules on the switches along the path.
The controller knows the network topology and collects traffic
statistics from the switches. With this information and user-
defined policies, the controller makes path selection.

The centralized control architecture is simple. It takes the
control plane out of the devices and pushes most of the
complexity to the controller, leaving the switches only with
its data plane. Not only does this simplify the data-forwarding
devices, but the centralized control makes it easier to enforce
complex traffic management policies.

However, the shortcomings of the centralized control are
also obvious. The controller can become a performance bottle-
neck. It has to set up the paths of all flows, incurring per-flow
computation overhead for path selection and per-flow commu-
nication overhead of transiting a packet header to the controller
and the forwarding rules back to the switches along the
selected path, together with acknowledgement packets, as well
as flow statistics collection. Such per-flow overhead becomes
significant when most flows are short with only a small number
of packets, which is unfortunately the common case [9].

D. Idea of Hybrid Switching

Both traditional switching/routing and SDN switching have
pros and cons. The former adopts coarse-grained, destination-
based path selection for space saving. With careful use of
available table space, today’s switches and routers are able to
scale to very large networks. The latter provides fine-grained

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:25:02 UTC from IEEE Xplore. Restrictions apply.

620 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

path selection and management functions at the flow level.
On the one hand, fine-grained per-flow paths require more
forwarding rules. But on the other hand, each forwarding
rule takes much more space than an entry in the traditional
switch table or routing table. That means the number of
available forwarding rules will be smaller, given the same
memory space. This is even more true if TCAM is used for
implementing the forwarding table. Fewer forwarding rules in
availability and more rules in demand contradict each other in
system design.

To solve this problem and relieve the computation/
communication bottleneck at the controller, we propose hybrid
switching that combines traditional switching/routing and SDN
switching for the benefits of both worlds. We refer to the
forwarding paths used in traditional switching/routing as tra-
ditional paths, and the path in SDN switching as SDN paths.
A device that performs hybrid switching is called a hybrid
switch, and its benefits are summarized below.

First, studies on real network traffic showed that most flows
were short-lived with light traffic [13]. Routing them via
SDN’s forwarding tables has little lasting impact on network
performance and does not justify the associated overhead.
Moreover, it causes additional delay due to communication
with the controller, path selection and deployment, which hurts
flow performance. With hybrid switching, we will direct these
flows through the traditional paths, avoiding per-flow overhead
to the controller and reducing the number of forwarding rules
needed.

Second, studies also showed that the elephant flows domi-
nate in traffic volume although their number may be relatively
small [13]. From the traffic engineering’s point of view, it is
economic to focus on these flows and route them via optimal
SDN paths for desired network performance. SDN switching
allows us to directly control a selected number of flows that
have the most impact.

Third, with the help of centralized control from SDN,
we will be able to implement traditional switching/routing
much more efficiently and make sure that the traditional paths
comply with the management/security policies if there is any.
With the help of traditional paths, we will be able to implement
SDN paths much more efficiently by reducing the number of
forwarding rules needed for the deployment. Hybrid switching
is not a simple combination of SDN switching and traditional
switching/routing, but instead a full integration, in which the
two are inter-twined and help each other to make both perform
better.

In the rest of the paper, whenever we refer to forwarding
table, we imply SDN switching. Similarly, switch table implies
traditional switching, and routing table implies traditional
routing.

III. DESIGN OF HYBRID SWITCHING (HS)

This section goes step by step in explaining our design
of hybrid switching. First, we discuss how to implement
traditional switching/routing more efficiently with the help of
a centralized controller. Second, we integrate SDN switching
with traditional switching/routing. Third, we discuss how to
identify large flows by per-flow statistics measurement in a
compact space without using the counters in the forwarding
tables. Fourth, we design hybrid path deployment that exploits
traditional paths to reduce the number of forwarding rules
needed for SDN paths. Fifth, we combine all the pieces into
an overall design of hybrid switching.

Fig. 1. Implementing switch tables with the help of a centralized controller.

A. Traditional Switching/Routing With a Controller

1) Traditional Switching With a Controller: We consider an
SDN network where each switch also implements a traditional
switch table, in addition to the forwarding table for SDN
switching. We explain how to integrate switch tables into the
SDN architecture and implement them more efficiently. In
this work, we assume a full SDN network where all switches
are SDN switches. More precisely, they are hybrid switches,
implementing the traditional switch tables with the help of a
centralized controller. We will discuss how to extend HS to a
partial SDN network in Section III-F.2.

When a switch receives a data frame and does not find a
matching entry in its switch table, it sends a request, carrying
the destination MAC address, to the controller. The controller
has the full knowledge of the switches, the hosts, and the
network topology. It finds a path to the destination. When there
are multiple paths, it selects one based on certain criterion
such as shortest distance. It will then send a control packet,
with the proper switch-table entry, to every switch on the path,
including the requesting switch, as shown in Figure 1. The data
frame, as well as all subsequent frames in the flow, will be
forwarded along this path unimpeded towards its destination.
With the help of the controller, we avoid the broadcast —
which may reach all end hosts of the whole network — when
a matching entry cannot be found.

2) Traditional Routing With a Controller: Next we consider
an SDN network where each switch is a layer-3 switch, which
implements a traditional routing protocol, in addition to its for-
warding table. We use OSPF [10] as example. In the classical
implementation of OSPF, every router periodically sends the
state of its adjacent links to all other routers, and receives such
information from other routers as well. Therefore, all routers
have the same view of the whole network, based on which
they compute their routing tables. Now, with a centralized
controller, all routers only need to periodically send their
link states to the controller, which collects a global view of
the network, computes the routing tables of all routers, and
updates the routers with the changes in their routing tables.

In the original OSPF, each router receives O(|E|) link
states, where E is the set of links in the network. The overall
communication complexity for all routers is O(|N | |E|),
where N is the number of routers. With the controller’s
help, routers do not receive link states. Only the controller
does, with a communication complexity O(|E|) for the whole
network. For the routing-table update, only the difference
will be transmitted and the controller is able to contain such
difference to a small amount by adopting a route computation
algorithm that keeps the stability of the routes. In fact, even in
traditional OSPF networks, the protocol is often configured to
compute routes based on hop counts to avoid route churns [10].
In an SDN network, the controller has more reasons to adopt
such a strategy because it has another tool, SDN switching, for
dealing with traffic engineering and load balancing on different
paths.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:25:02 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ACHIEVING HIGH SCALABILITY THROUGH HS IN SDN 621

B. Integration of SDN Switching With Traditional
Switching/Routing

We first consider the integration of SDN switching with
traditional routing. When a switch receives a packet, it matches
the packet against both the SDN forwarding table and the
traditional routing table. As long as the forwarding table has
a matching entry, it takes the precedence and the packet will
be forwarded accordingly. If the packet belongs to a new flow
and the forwarding table does not have a matching entry, there
are two path selection strategies.

1) Traditional Path First (TPF): New flows will take the
traditional paths by default without causing any immediate
overhead to the controller. For a packet from a new flow,
without a match in the forwarding table, the switch will handle
the packet according to the routing table, which will always
give a matching entry, meaning that it can scale to an arbitrary
number of flows. New flows will not automatically generate
requests to the controller for path selection, in contrast to
what today’s SDN switches do. This property helps reduce
the controller’s communication/computation burden and avoid
a potential performance bottleneck in the system. While all
new flows follow the traditional paths by default, the switches
will monitor their flows, identify the large ones, and estimate
their sizes. Periodically they will send the information of
the identified large flows to the controller, which performs
global optimization to improve network performance by re-
routing some or all of the large flows via optimal SDN paths,
subject to the size constraint of the forwarding tables at the
switches. The formulation of the optimization is dependent on
the user-specified performance and management requirements,
which vary in practice; we will provide a case study in the
next section. The controller will then update the switches’
forwarding tables by installing the new paths; see [7], [14] for
update schemes that ensure packet-level routing consistency.

2) SDN Path First (SPF): New flows will take the SDN
paths by default. For a packet from a new flow, without
a match in the forwarding table, as long as the switch’s
forwarding table is not overflown, it will forward the packet
header to the controller for installing an SDN path. If the
forwarding table is full, the switch forwards the packet based
on the routing table.

Although SPF solves the overflow problem of forward-
ing tables, it still faces other problems of SDN switch-
ing as explained in Section II-C: per-flow communication/
computation overhead to the controller (even for small flows
that contain a few packets themselves) and extra delay to a
flow’s first packet due to the setup of SDN path. We advocate
TPF not only because it avoids these problems but also because
batch setup of forwarding paths for a set of flows together tend
to produce better global optimization than setup of the paths
one at a time sequentially.

Next, we consider the integration of SDN switching with
traditional switching under TPF. When a switch receives
a data frame, it matches the frame against both the SDN
forwarding table and the traditional switch table. As long as
the forwarding table has a matching entry, the frame will
be processed based on that entry; otherwise, if the switch
table has a matching entry, the frame will be forwarded
to the specified output port. If there is no matching entry
in either table, the switch will send a request, carrying the
frame’s destination MAC address, to the controller, which
will establish a tradition path towards the destination and
install proper entries in the switch tables along the path.

Fig. 2. Illustration of hybrid path deployment. (a) Flow f follows the
traditional path, which is specified by solid arrows. (b) Flow f is re-routed to
an SDN path, s1 → s4 → s5 → s6, where the forwarding rules are shown
as dashed arrows. (c) Due to hybrid deployment, only one forwarding rule
at s1 is actually deployed. (d) In a slightly different example, we show that
more than one forwarding rule may be used to deviate the SDN path from
the traditional path for more than once.

Again, all switches will monitor their flows and send the
information of large flows to the controller, which will perform
global optimization periodically by re-routing large flows to
optimal SDN paths.

C. Hybrid Path Deployment

When the controller decides to re-route a flow from its
traditional path to an SDN path p, under the traditional wis-
dom, the controller must deploy one forwarding rule at every
switch on p, occupying an entry in the switch’s forwarding
table [6], [7]. However, the proposed hybrid switching offers
a new opportunity to save forwarding-table space. Consider an
arbitrary switch s on p. Let t be the output port specified in
the forwarding rule that the controller intends to deploy at s.
If t is also what the traditional path from s to the destination
specifies, there is no need to actually deploy the forwarding
rule because without this rule, switch s will use the traditional
path automatically, which will forward the packet to port t.

Figure 2 shows an example of hybrid path deployment,
where the top plot shows a flow f passing through a traditional
path from host h1 to host h2. Assume all switches already
have proper matching entries for h2 in their switch tables
(or routing tables), as shown by solid arrows in the top plot.
Now the controller wants to re-route f to a different path,
s1 → s4 → s5 → s6 → h2, requiring four forwarding
rules to be deployed at four switches, as shown by dashed
arrows in the second plot. The forwarding rules at s4, s5

and s6 specify the same outports as the traditional paths do.
With hybrid deployment, the controller only needs to deploy
one forwarding rule at s1, where the rest of the SDN path
follows the traditional path, as the third plot shows. In a more
complicated case of the fourth plot, two forwarding rules are

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:25:02 UTC from IEEE Xplore. Restrictions apply.

622 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

deployed at s1 and s6, respectively, allowing the SDN path to
deviate from the traditional path for a second time at s6.

As a side benefit, hybrid path deployment can help reduce
the dependency in the order of forward-rule deployment,
which in turn helps reduce the deployment time. According
to [7] and [14], in order to ensure packet-level routing con-
sistency, we should perform two-phase deployment when re-
routing f , with the first phase installing the forwarding rules
at s4, s5 and s6 (the third plot), and then the second phase
installing the forwarding rule at s1; see the original paper [7]
for reasons. Under hybrid path deployment, we need only one
phase of installing the rule at s1 in this example, which cuts
down deployment time.

D. Per-Flow Statistics and Large-Flow Identification

According to the OpenFlow specification [15], each entry in
the forwarding table has statistic counters for per-flow traffic
measurement. However, this is insufficient for our design
because many or even most flows will follow the traditional
paths specified in the switch table (or routing table) where
there is no per-flow entry. More importantly, under TPF in
Section II-D, all new flows follow the traditional paths by
default. When we want to find the large ones among them
for re-routing, the counters in the forwarding table will not
help. We need to adopt a new mechanism to collect per-
flow statistics without incurring too much space overhead as
the size of SRAM is limited. The idea is for each switch
to produce a traffic synopsis, a compact data structure that
summarizes the traffic of all flows passing the switch and
supports queries on individual flows.

There is a rich literature on per-flow size measurement
under tight memory. For a few examples, the method of
randomized counter sharing (RCS) [16] was proposed to
further reduce memory requirement and processing time by
using virtual storage vectors. We adopt RCS because its per-
packet overhead is very small (updating a single counter) and
it supports an arbitrary number of flows with a pre-allocated
memory space.

To cover all flows, it is sufficient for only the edge
switches to perform traffic measurement, which relieves the
core switches from this overhead. Each edge switch samples
the arrival packets to record a number of flow identifiers, and
forms a storage vector of the flow, denoted as Cf , where
f is the identifier of the flow. Large flows have proportionally
higher probabilities to be sampled. At the end of every mea-
surement period, it estimates the size of each sampled flow f
by summing up the counters in Cf after subtracting away a
noise term, which is simply the average counter value across
the whole synopsis. According to the analysis in [16], RCS
gives very accurate estimates for large flows whose sizes are
much larger than the average flow size. This fact is confirmed
in our experiments. Knowing the sizes of the sampled flows,
each edge switch reports its largest k flows and their sizes
to the controller, where k is a system parameter set by the
controller. As we will show in the case study, the computation
overhead of the controller is dependent on the number of flows
to be re-routed. By adjusting this value, the controller has a
way to prevent the switches from overloading itself.

E. Overall Design

The overall design is illustrated through a packet-processing
flow chart in Figure 3. When a packet arrives at an input

Fig. 3. Illustration of real-time packet processing.

port of a switch, it is processed with forwarding-table lookup
and switch/routing table lookup, which may be carried out
in parallel by ASIC hardware on chip. We adopt the TPF
strategy: The packet will be handled by the forwarding table
if a matching entry exists. If not, the packet will be forwarded
based on the switch/routing table if a matching entry exists.
In case of switch table, there may not exist a matching entry.
When this happens, the switch will report the destination MAC
address to the controller for path selection. In the meantime,
for an edge switch, the packet will also be processed for flow
sampling and synopsis-based traffic measurement.

Besides the above real-time packet processing, at the end
of each measurement period, every edge switch will estimate
the sizes of the sampled flows based on the information
recorded in the synopsis. It reports the largest k flows and their
estimated rates to the controller for possible re-routing, where
a flow’s estimated rate is the estimated flow size divided by
the measurement period. We should note that, the optimization
approach can be combined with other flow size detection
mechanisms, like end-point based detection [17] instead of
switch based shared-counter mechanisms.

F. Discussion

This section discusses some issues to enhance our HS
mechanism.

1) Dealing With Topology Changes: We believe that topol-
ogy changes have similar impact on DevoFlow and HS. When
there is a link (or node) failure, some existing paths specified
by wildcard rules in DevoFlow or routing tables in HS may
become invalid. After a neighboring switch detects such a
failure and reports it to the controller, the controller will
recompute the affected rules or routing entries and updates
the relevant switches. When there is a new link (or a new
node), some existing paths may become non-optimal. Again,
the controller will update wildcard rules or routing entries
when necessary.

2) Extending HS to a Partial SDN Network: Our HS
mechanism can be applied in a partial SDN network. Since
the controller can only control those SDN switches in a partial
SDN network, we just discuss how to process packets on SDN
switches. There are two cases as a packet arrives at an SDN
switch. On one hand, there is a matching entry in a routing
table or a forwarding table, this switch will forward the packet
directly according to the matched rule. On the other hand, there
is no matching entry for this packet. The switch reports the
destination MAC address to the controller for path selection.
In this situation, the controller will choose an admissible path
[4], [18] and install rules on the routing tables. We note that
an admissible path should be compatible with the distributed
routing protocol running on the legacy devices. To re-route

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:25:02 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ACHIEVING HIGH SCALABILITY THROUGH HS IN SDN 623

TABLE I

KEY NOTATIONS

some elephant flows, the controller should also select the
admissible paths for them.

3) Integrating the Policy Requirements: We believe that
policy enforcement in an SDN can also benefit from such
default paths. Consider a policy that requires certain packets
to be routed through a firewall. If this policy is applied to all
packets from a certain source subnet to a certain destination
subnet, it will be easy for the controller to modify Dijkstra’s
algorithm such that the routing path from the specified source
to the specified destination includes a firewall. After this path
is inserted into the routing tables that are distributed to the
switches on the path, the policy is automatically enforced.
More generally, when wildcard rules are used for policy
enforcement (as DevoFlow does), our default paths are still
helpful, depending on the specific mechanism of enforcement.

IV. APPLICATION OF HYBRID SWITCHING

The component missing so far is the controller’s global
optimization in re-routing large flows via SDN paths. However,
the implementation of this component is directly related to the
performance goal and the management policies, which are set
by the system admin and vary greatly in practice.

A. A General Optimization Framework Via HS

We first give the notations: Denote the set of n switches
as S = {s1, . . . , sn}, and the set of m hosts (terminals) as
H = {h1, . . . , hm}. The network topology is modeled as a
graph G = (S ∪ H, E), where E is the set of links. Let c(e)
be the capacity of a link e and l(e) be its load. The switches
measure traffic loads on all their ports (i.e., adjacent links)
and make the information available to the controller through
Openflow [2]. For ease of reference, some key notations are
listed in Table I.

From the large flows reported by the switches (or by other
flow detection methods, e.g., [17]), the controller selects a
subset Π of the largest ones for re-routing so as to provide
various performance optimization. The size of Π may be
constrained by the budget of execution time for solving the
optimization problem; the relationship between the size of Π
and the execution time can be roughly estimated based on the
past executions. Let r(f) be the estimated rate of flow f ∈ Π,
which is reported by the edge switch of the flow. Let P(f)
be the set of candidate paths for flow f . P(f) is determined
based on the management policies and performance objectives.
For example, if there is a policy that matches f and states

that the flow’s path must pass certain types of middleboxes
(e.g., firewalls or IDSes), then P(f) must only contain such
paths, and if there is too many of them, we may include only
a certain number of best ones under a certain performance
criterion, such as having the shortest number of hops or having
the large capacities. P(f) also contains the path p∗(f) that the
flow is currently routed through.

Let yp
f ∈ {0, 1} be an indicator variable for whether

flow f will be routed on a path p ∈ P(f). Let T (s) be the
number of residual entries in the forwarding table at switch s.
Let I(f, p, s) be a binary value for hybrid path deployment
(Section III-C): if path p assigned to flow f overlaps with
the flow’s traditional path at switch s, then there is no need
to deploy an entry on the forwarding table of switch s, i.e.,
I(f, p, s) = 0; otherwise I(f, p, s) = 1. We formalize the
general optimization framework as follows:

max H

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(e) = l(e) −
∑

f∈Π:e∈p∗(f)
r(f), ∀e ∈ E

∑

p∈P(f)
yp

f = 1, ∀f ∈ Π
∑

f∈Π

∑

p∈P(f):s∈p
yp

f · I(f, p, s) ≤ T (s),

∀s ∈ S

b(e) +
∑

f∈Π

∑

p∈P(f):e∈p
yp

fr(f) ≤ λ · c(e),
∀e ∈ E

yp
f ∈ {0, 1}, ∀p, f

λ ∈ Λ.

(1)

The first set of equations computes the background traffic load
b(e), ∀e ∈ E, when the flows in Π are taken out. The second
set of equations requires that flow f ∈ Π is not splittable;
it will be forwarded through a single path from P(f). The
third set of inequalities describes the size constraints of the
forwarding tables on switches. The fourth set of inequalities
states the traffic load on each link e, which is the sum of
background traffic load and traffic from the flows scheduled
on the path. Note that Λ is a feasible range for parameter
λ. The optimization objective is determined by the user’s
requirement. We denote this as H, which may depend on
different parameters, such as λ and/or the rates of all flows
in Π. It should be noted that Λ and H are closely related.
For example, if we try to maximize the amount of traffic
that passes through middleboxes, the objective function H
is described as

∑
f∈Π

∑
p∈P(f) r(f)yp

fzp, where zp denotes
whether there is a middlebox on path p or not. Under this
situation, it is required that there is no congestion on links, thus
we set Λ = {1}, i.e., λ = 1. As another example, Section IV-B
gives the load-balancing optimization for an SDN. We point
out that the above integer program will always have at least
one feasible solution — all flows f ∈ Π take their current
paths p∗(f), which means no re-routing and all flows keep the
status quo.

B. A Case Study of Load-Balancing Optimization

In this section, we consider a special case (aiming to load-
balancing optimization) of the general frameworks. According
to Eq. (1), we formalize the problem of load-balanced routing

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:25:02 UTC from IEEE Xplore. Restrictions apply.

624 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

with flow tables of limited size (LBR-FT).

min λ

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(e) = l(e) −
∑

f ∈ Π : e ∈ p∗(f)r(f), ∀e ∈ E
∑

p ∈ P(f)yp
f = 1, ∀f ∈ Π

∑

f∈Π

∑

p∈P(f):s∈p
yp

f · I(f, p, s) ≤ T (s),

∀s ∈ S

b(e) +
∑

f∈Π

∑

p∈P(f):e∈p
yp

fr(f) ≤ λ · c(e),
∀e ∈ E

yp
f ∈ {0, 1}, ∀p, f

λ ≤ 1.

(2)

The former three sets of constraints are same as those in
Eq. (1). The fourth set of inequalities states that the traffic load
on each link e should not exceed λ · c(e), where λ is the load-
balance factor (less than 1). That is, λ ∈ (0, 1]. The objective is
to minimize λ. Globally reducing the link loads and achieving
load balance have many benefits. It helps prevent large queuing
delays that happen when λ approaches towards 1. It leaves
room for new flows or allows the existing flows to increase
their rates for better network throughput. It indirectly helps
balance the occupation of the forwarding tables as flows are
spread among alternative paths.

Theorem 1: LBR-FT defined in Eq. (2) is an NP-hard
problem.

Proof: We consider a special example of the LBR-FT
problem, in which there is no constraint on the forwarding
table size, and the sampled flow set will cover all the flows in
a network. Then, we can deploy one flow entry for each flow
in an SDN. In other words, this becomes an unsplittable multi-
commodity flow with minimum congestion problem [19],
which is NP-Hard. Since the multi-commodity flow problem
is a special case of our problem, the LBR-FT problem is
NP-Hard too. �

C. Algorithm Description for the LBR-FT Problem

Since the LBR-FT problem is NP-Hard, it is difficult to
solve this problem optimally. In this subsection, we first
present an approximation algorithm, called RDSR, for the
LBR-FT problem. We then modify the RDSR algorithm so
as to satisfy the link capacity and flow table size constraints
in an SDN.

1) Rounding-Based Scalable Routing (RDSR): We describe
a rounding-based scalable routing algorithm (RDSR) for load-
balancing in an SDN. As there could be an exponential number
of possible paths between two edge switches, following [2],
[6], and [20], we assume that the controller precomputes a set
of candidate paths between each pair of edge switches. Given
the source and the destination of a flow f , we will set P(f) to
be the set of candidate paths between the two corresponding
edge switches which connect to the source terminal and the
destination terminal, respectively. These candidate paths may
simply be the shortest paths between the edge switches which
can be found by depth-first search. We should note that the
path set P(f) also includes the traditional path of this flow.

To solve the problem formalized in Eq. (2), the algorithm
constructs a linear program as a relaxation of the LBR-FT
problem. More specifically, LBR-FT assumes that the traffic
of each flow should be forwarded only through one path.
By relaxing this assumption, traffic of each flow f ∈ Π is

permitted to be splittable and forwarded through a path set
P(f). We relaxed linear program is denoted by LP1. The main
difference from Eq. (2) is that variable yp

f is not integral, but
fractional in LP1. Since LP1 is a linear program, we can solve
it in polynomial time with a linear program solver. Assume
that the optimal solution for LP1 is denoted by ỹ, and the
optimal result is denoted by λ̃. As LP1 is a relaxation of
the LBR-FT problem, λ̃ is a lower-bound result for LBR-
FT. Using the randomized rounding method [21], we obtain
an integer solution ŷp

f . More specifically, variable ŷp
f , with

p ∈ P(f), is set as 1 with the probability of ỹp
f while satisfying

∑
p∈P(f) ŷp

f = 1, ∀f ∈ Π. If ŷp
f = 1, ∃p ∈ P(f), this means

that flow f selects p ∈ P ′
f as its route. By this way, we have

determined the route for each flow in Π. The RDSR algorithm
is formally described in Algorithm 1.

Algorithm 1 RDSR: Rounding-Based Scalable Routing
1: Step 1: Solving the Relaxed LBR-FT Problem
2: Build up a feasible path set P(f) for flow f ∈ Π
3: T (s) is the number of residual flow entries on switch s
4: Construct a linear program in LP1

5: Obtain the optimal solution ỹ
6: Step 2: Route Selection for Load Balancing
7: Derive an integer solution ŷp

f by randomized rounding
8: for each sampled flow f ∈ Π do
9: for each route p ∈ P(f) do

10: if ŷp
f = 1 then

11: Appoint a path p for flow f
12: end if
13: end for
14: end for

Now, we illustrate our randomized rounding method.
Suppose that there are four candidate paths (p1, p2, p3, p

∗(f))
in set P(f). The final solutions for the situation are denoted
by {0.2, 0.2, 0.3, 0.3}. This means that the interval [0, 1] has
been divided into four parts, (0, 0.2], (0.2, 0.4], (0.4, 0.7],
and (0.7, 1.0]. We then randomly choose a value from 0 to 1.
Assume that the random value is 0.3. Since this value lies in
(0.2, 0.4], the second feasible path p2 will be chosen for flow.
If the random value is 0.8, the fourth one (i.e., the current
route p∗(f)) will be selected.

We analyze the approximate performance of the proposed
RDSR algorithm. Assume that the minimum capacity of all the
links is denoted by cmin. We define a variable α as follows:

α = min{min{ λ̃cmin

r(f)
, f ∈ Π}, min{T (s), s ∈ S}} (3)

By observing the practical network traces, we find that α ≥ 1
in most situations. Since RDSR is a randomized algorithm,
we compute the expected traffic load on links and the expec-
tation of required flow entries on switches. We give the
approximation performance of the proposed algorithm.

Lemma 2: The proposed RDSR algorithm can achieve the
approximation factor of 4 log n

α +4 for link capacity constraints.
The proof of Lemma 2 has been relegated to the appendix.
Similarly, we can obtain the approximation factor for the

flow-table size constraint.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:25:02 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ACHIEVING HIGH SCALABILITY THROUGH HS IN SDN 625

Lemma 3: After the rounding process, the amount of
required flow entries on any switch s will not exceed the
number of residual flow entries T (s) by a factor of 3 log n

α +3.
Approximation factor: Following from our analysis,

by routing a full percentage of flows on each chosen path,
the capacity of links will hardly be violated by a factor of more
than 4 log n

α +4, and the flow table size constraints will not be
violated by a factor of 3 log n

α + 3. It means that the algorithm
can achieve the optimal solution, violating the link capacity
constraint by at most a factor 4 log n

α +4 and the flow table size
constraint by at most a factor 3 log n

α + 3, which is also called
as bi-criteria approximation. By using the traffic controlling
method, the intensity of all the flows can be limited to specific
values. Thus, we scale all flows by a factor of 4 log n

α + 4 to
satisfy the link capacity constraints. As to the cases where the
flow table size constraints are violated, the default flow entries
will take effect to transfer these extra flows, avoiding packets
dropping.

Moreover, we want to address that, in most situations,
the RDSR algorithm can reach almost the constant bi-criteria
approximation. For example, let λ̃ be 0.4 (with a moderate
value). Assume there is a large-scale network with n = 1000
switches, so that log n ≈ 10. The link capacity of today’s
networks will be a bandwidth of 1Gbps at least. Observing
the practical flow traces, the maximum intensity of a flow
may reach 1Mbps or 10Mbps. Under two cases, cmin

r(f) will be
103 and 102. The approximation factor for the link capacity
constraint is 4.1 and 5, respectively. Since T (s) is usually at
least 103, the approximation factor for the flow table constraint
is 3.03. In other words, our RDSR algorithm can achieve
almost the constant bi-criteria approximation for the LBR-FT
problem in many network situations.

2) Complete Description for the RDSR Algorithm: Though
the RDSR algorithm will obtain the bi-criteria approximate
performance for the LBR-FT problem, its randomized round-
ing method does not guarantee that the flow-table size con-
straint is always met. Below we give the complete description
for RDSR, which can always satisfy the forwarding table size
constraint.

The complete RDSR algorithm consists of three steps.
The former two steps are same as those in the basic RDSR
algorithm, described in Section IV-C.1. By the second step,
we assume that the number of required flow entries on each
switch s is denoted by T ′(s). Since some switches may violate
the flow-table size constraints, the third step will choose some
flows to be forwarded through traditional routes to satisfy the
forwarding table size constraint on each switch. Intuitively
speaking, let x̃f denote the probability that flow f will choose
a route path different from the current one. Thus, x̃f =∑

p∈P(f)−{p∗(f)} ỹp
f . We rank all the sampled flows by the

increasing order of x̃. Without loss of generality, we assume
that x̃f1 ≤ . . . ≤ x̃fr . Then, the algorithm checks all the flows
one by one. For each flow f , assume that its re-routed path
is p. We just consider the case in which its re-routed path is
not the traditional path. If there is one switch v on path p has
violated the forwarding table size constraint, we will not re-
route this flow. That is, this flow will be forwarded through the
traditional route. Then, we also update the number of required
flow entries on these switches. After we finish checking all the
sampled flows (or the forwarding table size constraints on all
switches are satisfied), the algorithm terminates. The complete
RDSR algorithm is described in Algorithm 2.

Algorithm 2 Complete Description for the RDSR Algorithm
1: Step 1: Same as that in Algorithm 1
2: Step 2: Same as that in Algorithm 1
3: Step 3: Route Selection with Flow-Table Size Constraint
4: Assume that the number of required flow entries on s is

T ′(s)
5: for each flow f ∈ Π do
6: x̃f =

∑
p∈P(f)−{p∗(f)} ỹp

f

7: end for
8: Rank all the flows in the increasing order of x̃. Assume

that x̃f1 ≤ . . . ≤ x̃fr

9: for each flow f ∈ Π do
10: Assume that its route is denoted by p
11: if T ′(s) ≥ T (s) and I(f, p, s) = 1, ∃s ∈ p then
12: Assign the traditional route for flow f
13: for each switch v ∈ p do
14: T ′(s) = T ′(s) − I(f, p, s)
15: end for
16: continue;
17: end if
18: end for

Now, we discuss the time complexity of the complete
RDSR algorithm. The first step mainly solves the linear
program. Since the linear program LP1 contains polynomial
number of variables, it takes polynomial times to solve this
linear program. The second step uses randomized rounding
for route selection, and its time complexity is Δ · r, where
Δ is the maximum number of feasible paths for all flows
and r = |Π|. In the third step, the algorithm computes a
weight for each flow, and its time complexity Δ · r too.
Then, for each flow, the algorithm will check the states of all
switches on its selected route, which takes a time complexity
of δ · r, where δ is the maximum hop number of each feasible
path. As a result, the total time complexity of RDSR is
polynomial.

V. NUMERICAL EVALUATION

A. Performance Metrics and Methodology

We evaluate the proposed hybrid switching (HS) through
simulations and testbed implementation, and compare it with
the most-related, state-of-the-art work of DevoFlow [5]. Both
of them try to improve the scalability of a large SDN system,
but their design goals are somewhat different: The main goal
of HS is to address the problem of limited forwarding-table
size and to reduce the overhead of the controller. The main
goal of DevoFlow is to reduce the overhead of the controller,
while achieving high network performance. Both DevoFlow
and HS are flexible in what algorithms to use in re-routing
and computing default paths, even though the paper gives an
RDSR re-routing algorithm for the load-balancing case study.
In fair comparison, we apply RDSR and shortest paths to both
DevoFlow and HS. In short, re-routing elephant flows is done
through RDSR, and ECMP rules are constructed to follow the
available shortest paths. When RDSR is applied for DevoFlow,
I(p, f, s) = 1, with s ∈ p and p ∈ P(f).

We use the following performance metrics in our numerical
evaluation: (1) the maximum number of forwarding rules (or
flow entries needed) on any switch at any time during the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:25:02 UTC from IEEE Xplore. Restrictions apply.

626 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

simulation. To better describe the usage of flow entries, we also
observe the cumulative distribution function (CDF) of the flow
entries under a fixed number of flows in a network; (2) the
maximum throughput of the entire network; (3) the maximum
load factor for load balancing, and the load factor CDF of
all links; (4) the communication traffic volume to/from the
controller. During a simulation run, at each time instance,
we measure the maximum and median number of forwarding
rules per switch, and the average number of forwarding
rules on any switch. We use their largest values over time
during the simulation as the first four metrics. The number
of routing entries in HS and the number of ECMP rules in
DevoFlow are the same at each switch, but each routing entry
is shorter and stored in SRAM, whereas each wildcard rule is
longer and stored in TCAM. Our evaluation does not consider
this “constant” overhead, which is highly dependent on the
network size, although such comparison would be in favor
of HS. As we continuously increase the number of flows,
we measure the maximum throughput that the network can
support. The load factor of a link is the traffic load divided by
the link capacity. The load balancing metric is the maximum
load factor among all links. Moreover, we compute the load
factor CDF of all links. The simulator measures the total
communication traffic to/from the controller, divided by the
time period of simulation, which gives the fifth metric.

B. Simulation Evaluation

1) Simulation Settings: Our simulations are executed on the
Mininet [22], which is a widely-used simulator specified for
SDN. We choose a two-dimensional HyperX topology [23] in
the simulation. The HyperX topology forms a 9×9 grid, and so
has 81 access switches, each attached to 16 other switches. All
links are 1Gbps, and 20 servers will be attached to each access
switch. So, the HyperX topology has 1620 servers. We use
power law for the flow-size distribution, where 20% of all
flows account for 80% of traffic volume [13]. The average
flow intensities of elephant flows and mice flows are set as
4Mbps and 0.25Mbps, respectively. We generate three types
of flows: (1) random flows, whose sources and destinations
are randomly picked; (2) server flows, which simulate the
traffic between random hosts and a number of designated
servers, e.g., mail servers and web servers; (3) associative
flows, which simulate the traffic between a subnet and a server,
e.g., communications between the finance department and the
finance database or between a hospital and a datacenter that
houses the patient data. Curtis et al. [5] have shown that the
overhead of the sampling method is less than that of the push-
based method for flow statistics collection. For fairness, both
HS and DevoFlow use the sampling method and each switch
will report the traffic estimation information of the largest
1,500 (elephant) flows at most to the controller.

The simulations are performed under two scenarios. The
first scenario has no forwarding-table size (FTS) constraint,
assuming that the switches have sufficient space to handle
all flows. This hypothetical scenario tests the performance of
HS (DevoFlow) when the table size is not a limiting issue.
The second scenario has an FTS constraint and tests how
well HS (DevoFlow) performs when the table size becomes a
problem.

2) Performance Comparison Without FTS Constraint: Our
first set of simulations compares HS and DevoFlow in the
scenario without FTS constraint. The results are shown

Fig. 4. Maximum number of flow entries vs. number of flows without FTS
constraint.

Fig. 5. The CDF of flow entries among all switches without FTS constraint.

Fig. 6. Network throughput vs. number of flows without FTS constraint.

Fig. 7. Max. load factor vs. number of flows without FTS constraint.

Fig. 8. The CDF of load factors without FTS constraint.

Fig. 9. Control overhead vs. number of flows without FTS constraint.

in Figures 4-9, where the horizontal axis is the number of
flows in the network, ranging from 10 × 104 to 80 × 104.
Figure 4 shows the maximum number of flow entries needed
by two algorithms. As the number of flows increases, there
are more elephant flows as well. As a result, the maximum
number of flow entries (or forwarding rules) increase in
both HS and DevoFlow. In comparison, the proposed HS
solution uses much fewer flow entries than DevoFlow. For
example, when there are 50 × 104 flows (about 300 flows
per server), HS uses a maximum number of 600 flow entries

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:25:02 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ACHIEVING HIGH SCALABILITY THROUGH HS IN SDN 627

Fig. 10. Maximum number of flow entries vs. number of flows with FTS
constraint.

Fig. 11. The CDF of flow entries among all switches with FTS constraint.

Fig. 12. Network throughput vs. number of flows with FTS constraint.

Fig. 13. Max. load factor vs. number of flows with FTS constraint.

on a switch, while DevoFlow uses 3,100. Figure 5 shows the
CDF of flow entries under a fixed number (e.g., 60×104) of
flows. From this figure, over 90% of switches need less than
500 flow entries by HS, while over 80% of switches about
1,000-4,000 flow entries by DevoFlow. More specifically, HS
reduces the required flow entries by about 80.5% compared
with DevoFlow. That’s because our hybrid path deployment
mechanism helps to reduce the required flow entries by
combining traditional/SDN routing.

Figures 6-8 show that HS and DevoFlow achieve similar
network performance, including throughput and load balanc-
ing. The reason is that without FTS constraint, both designs
can dynamically schedule the elephant flows for efficient rout-
ing. Figure 9 shows that HS has much smaller communication
overhead at the controller than DevoFlow. As the number of
flows increases, DevoFlow deploys more forwarding rules than
HS, which results in higher control overhead. For example,
when there are 80×104 flows, the control overheads of HS
and DevoFlow are about 140Mbps and 290Mbps, respectively.

3) Performance Comparison With FTS Constraint: The sec-
ond set of simulations compares HS and DevoFlow with
FTS constraint, where the forwarding table size is set to
1,500 entries [5]. The results are shown in Figures 10-15,
where the horizontal axis is the number of flows in the
network. In Figure 10, HS needs much fewer flow entries
than DevoFlow, whose table is saturated much earlier. As an
example, when there are 50×104 flows in the network, HS uses

Fig. 14. The CDF of load factors among all links with FTS constraint.

Fig. 15. Control overhead vs. number of flows with FTS constraint.

a maximum number of 800 flow entries in any switch, while
DevoFlow uses 1,500 (with the forwarding table becoming
full). Under a fixed number (e.g., 60×104) of flows, we plot
the CDF of flow entries in Figure 11. This Figure shows
that, over 90% of switches need less than 500 flow entries
by our HS mechanism, while about 70% of switches need
1,000-1,500 flow entries by DevoFlow. This saturation has a
performance impact, as shown below.

When the number of flows is less than 30×104, the for-
warding table is not made full by DevoFlow. In this case, HS
and DevoFlow achieve similar network performance, including
throughput and load balancing, as shown in Figures 12-14.
On the contrary, when the number of flows is more than
30×104 and the forwarding table is made full by DevoFlow,
HS outperforms DevoFlow because the routing flexibility
of the latter is constrained. For example, when there are
80×104 flows in the network, HS improves network through-
put by 63% when comparing with DevoFlow by Figure 12.
From Figure 13, when the number of flows exceeds 60×104,
the maximum load factor is close to 1 for both DevoFlow
and HS. Figure 14 plots the CDF of load factor by different
algorithms under the same case with 60×104 flows. This
figure shows that our proposed HS method can achieve better
route performance than DevoFlow. In other words, DevoFlow
will make more flows congested compared with HS. As a
result, HS can forward more flows than DevoFlow, which is
also validated by Figure 12. Since HS deploys a fewer number
of forwarding rules than DevoFlow, it incurs smaller control
overhead, as shown in Figure 15. When there are more and
more flows in a network, due to the constraint of forwarding
table size, the numbers of deployed rules on each switch by
DevoFlow and HS are very close, and the overheads of two
solutions are very close too.

4) Robustness Comparison With FTS Constraint: This
section mainly shows the applicability and robustness of
our proposed algorithm. We first observe the throughput
performance of DevoFlow and HS by changing two network
parameters, e.g., the number of available flow entries and
the traffic scheme. When the number of flow entries is
increasing, the network throughput for both algorithm is also
increased, and the increasing ratio of network throughput is
much slower, as shown in Figure 16. That’s because the SDN
network can provide more chance for flow re-rerouting with
more flow entries. This figure shows that our HS method
can improve the network throughput 15-55% compared with

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:25:02 UTC from IEEE Xplore. Restrictions apply.

628 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

Fig. 16. Network throughput vs. number of entries with FTS constraint.

Fig. 17. Network throughput vs. different traffic schemes with FTS constraint.

Fig. 18. Maximum number of flow entries vs. number of flows with FTS
constraint on fat-tree.

DevoFlow under a various number of flow entries on each
switch. Figure 17 shows the network throughput of two
algorithms by changing the network traffic schemes. For
example, 1-9 denotes that top 10% of all flows account
for 90% of traffic volume. This figure shows that our HS
method can perform much better than DevoFlow with a
lighter traffic skew (e.g., 4-6 distribution). However, even in
an extremely higher traffic skew, HS can improve the network
throughput 17% compared with DevoFlow.

We then observe different performance metrics (e.g., max-
imum number of flow entries and maximum load factor) on
another network topology. We adopt a widely used datacen-
ter topology, fat-tree [24], which contains 80 switches and
128 servers. Figure 18 shows that HS needs much fewer flow
entries than DevoFlow. As an example, when there are 20×104

flows, HS uses a maximum number of 430 flow entries in any
switch, while DevoFlow uses 1,500 (with the forwarding table
becoming full). Moreover, when the number of flows reaches
70×104, HS uses a maximum number of 1,500 flow entries.
With more and more flows, Figure 19 shows that the maximum
load factor is increasing for both algorithms. Moreover, HS can
reduce the maximum load factor by about 25%-30% compared
with DevoFlow, except that the maximum load factor is 1 for
both DevoFlow and HS with more than 40×104 flows.

In the above simulations, we assume that the controller
uses the OSPF method for default paths. We finally evaluate
the number of needed flow entries when another default path
scheme, e.g., ECMP, is adopted on HyperX. In Figure 20,
HS needs much fewer flow entries than DevoFlow, whose
table is saturated much earlier (with 40×104 flows). Even with
80×104 flows, HS requires 1,360 flow entries at most on any
switch. Under a fixed number (e.g., 60×104) of flows, we plot
the CDF of flow entries in Figure 21. This figure shows that,
over 90% of switches need less than 500 flow entries by our
HS mechanism, while about 60% of switches need more than
1,000 flow entries by DevoFlow.

Fig. 19. Max. load factor vs. number of flows with FTS constraint on fat-tree.

Fig. 20. Max. number of entries vs. number of flows with FTS constraint
using ECMP.

Fig. 21. The CDF of flow entries among all switches with FTS constraint
using ECMP.

Our evaluation is performed under two scenarios: In the first
scenario, we do not set a limit on the number of rules that each
switch can hold. As expected, the results show that DevoFlow
and HS have similar performance in load balancing, while HS
requires much fewer rules due to its hybrid path deployment.
In the second scenario, we set a certain limit on the number
of rules. This makes sense because many SDN switches are
designed to hold all OpenFlow forwarding rules in TCAM.
As we vary this limit, the results consistently show that HS
outperforms DevoFlow. The reason is that HS requires fewer
rules to re-route elephant flows (again thanks to hybrid path
deployment). Therefore, HS can re-route more elephant flows
and thus have better performance. Our simulation results also
reveal the better robustness of HS.

C. Testbed Evaluation

1) Implementation on the Platform: We implement the
hybrid switching and flow re-routing solutions on the commod-
ity hardwares. The topology of our SDN platform is illustrated
in Figure 22. Our testbed is composed of three parts: a server
installed with the controller’s software, a set of OpenFlow
enabled switches and some terminals. Specifically, we choose
Opendaylight, which is an open source project supported by
multiple enterprises, as the controller’s software. The con-
troller is running on a server with a core i5-3470 processor and
4GB of RAM. We build the forwarding plane of an SDN with
6 H3C S5120-28SC-HI switches, which support the OpenFlow
v1.3 standard. We use 4 laptops as terminals, which will gener-
ate hundreds of flows in a network. In this figure, the solid link
denotes the data link between two switches, and the dashed
link denotes the control link between a switch and the con-
troller. By default, the capacity of each data link is 100Mbps.

In the system implementation, each flow is identified as
three elements, source IP, destination IP and source port,
so that the system is able to generate hundreds of flows in

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:25:02 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ACHIEVING HIGH SCALABILITY THROUGH HS IN SDN 629

Fig. 22. Topology of the SDN platform. Our platform is mainly composed of
three parts: a controller, six OpenFlow enabled switches and four terminals.

Fig. 23. Number of flow entries needed on different switches.

the network with only four terminals. If we do not include
source port for flow identification, tens of terminals are needed
so as to generate hundreds of flows, which makes the SDN
platform more complex. Under our system framework, each
ingress switch should be able to estimate the flow intensity
using the packet sampling. However, since the commodity
switch’s software (e.g., firmware) is not open for us, we cannot
add the extra software module on each switch under the current
phase. Thus, to sample the packets and estimate the flow
intensity, we deploy a traffic monitor between a sender termi-
nal and its ingress switch using the “mirroring" mechanism,
so that the monitor can estimate the real-time flow intensity,
and report to the controller periodically. Then, the controller
records the information of those reported elephant flows,
designs the efficient routes for those (elephant) flows, and
deploys feasible rules on forwarding tables. We implement
two different solutions, HS and DevoFlow, on the controller.
Each of two algorithms requires two flow tables. However,
our commodity switch is only equipped with one flow table,
i.e., the forwarding table. To accommodate this constraint,
we deploy rules of both traditional routes and SDN routes in a
single forwarding table, but they will be assigned with different
priorities. More specifically, the priority of SDN routes is
higher than that of traditional routes, so that the controller
will first match SDN route rules with higher priority before
traditional route rules with lower priority.

2) Testing Results: We will discuss the testing results of
both HS and DevoFlow.

Flow entry requirement: In the system, two terminals u1

and u2 will totally generate 300 flows, and forward to two
terminals u3 and u4, respectively. According to the 2-8 distri-
bution rule, there are 60 large flows (or elephant flows) and
240 small flows (or mice flows). The average flow intensities
of the elephant flows and the mice flows are 1.5Mbps and
150kbps, respectively. We also set the traditional route for each
pair of terminals. For example, the traditional route from u1 to
u3 is u1−v1−v2−v4−u3. We mainly observe the number of
required flow entries for SDN routes among all switches by
different algorithms. Figure 23 shows that our HS solution
needs less flow entries than the DevoFlow method. More

Fig. 24. Max. load factor on a testbed.

specifically, the maximum number of flow entries is reduced
from 39 by DevoFlow to 21 by HS. That is, our solution
can reduce the maximum number of required flow entries
about 46.1% compared with the DevoFlow method. Note that,
since v1 and v2 are two ingress switches of these flows, they
require more flow entries for SDN routes compared with other
switches. That’s because, the controller will schedule these
flows on different paths for load balancing with global traffic
information. As a result, other switches may burden a sub-
set of flows, and thus require less flow entries compared with
two ingress switches. For the average case, HS and DevoFlow
require 7 and 20 flow entries, respectively, on all the switches.

Route performance: We then observe the route
performance of load balancing by changing the number of
flow entries for SDN route rules on each switch. Since the
DevoFlow and HS solutions need 39 and 21 flow entries at
most for these 300 flows, we change the number of available
flow entries from 0 to 40 with interval 10 flow entries.
When the number of available flow entries for SDN routes
is 0, it means that all the flows will be forwarded by the
traditional routes. Accordingly, the maximum load factor is
high (e.g., 0.63). With the increase of flow entries, since
some flows can be re-routed by setting up flow entries for
SDN routes, the maximum load factor is decreased for both
two solutions, shown in Figure 24. When there are 10, 20,
30 and 40 flow entries for SDN routes in a switch, our HS
solution can reduce the maximum load factors about 15.8%,
31.2%, 23.6% and 22.2%, respectively.

VI. RELATED WORK

SDN was introduced to improve network performance
through centralized control [2]. For example, the centralized
traffic engineering service of B4 [3] is able to drive links to
near 100% utilization, with load balancing among alternative
paths. These routing methods try to maximize the network
throughput by different ways, such as linear program, route
update, etc. However, the limited size of the forwarding
table and the communication/computation/management load
at the controller place constraint on the scalability of such a
centralized design.

To address these problems, the prior art mainly uses wild-
cards [25]. The Plug-n-Serve system [26] uses wildcards to
aggregate multiple flows into a single rule (occupying one for-
warding entry). Their use of wildcards is limited to the suffixes
of source address. But as each wildcard rule bundles many
flows together based on their address adjacency, it partially
compromises the SDN’s flexibility of differentiating arbitrary
individual flows in traffic engineering. Moreover, compression
of SDN rules using wildcards is also discussed in [27].

Hedera [28] is designed to re-route large flows in a datacen-
ter network that has a structured topology such as fat tree [24]
to provide probabilistic default path selection among multiple
alternative choices. DevoFlow [5] is more general for arbitrary
network topologies. It combines pre-deployed wildcard rules

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:25:02 UTC from IEEE Xplore. Restrictions apply.

630 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

and dynamically-established exact rules, with a design goal
of reducing the need to involve the controller in setting up
paths for new flows. Limited by the small size of TCAM,
the number of wildcard rules is small, and each wildcard rule
may have to match numerous flows. In order to differentiate
individual flows (so as to measure their individual sizes and
re-route them as needed for load balancing), when a new flow
matches a wildcard rule, an exact rule specifically for that flow
will be created based on the template of the wildcard rule,
without involving the controller. Though DevoFlow addresses
the problem of limited table size, it installs exact rules on
switches along its route path, so that it can not provide per-
flow control for much more flows, which has been validated by
our simulation in Section V. Moreover, the paper of DevoFlow
has no discussion on how to construct the wildcard rules,
in particular, ones that can cover all possible flows at all
switches throughout the network.

Cohen et al. [6] study the effect of forwarding-table size
on network utilization. They formulate this problem as an
NP-hard optimization problem and present approximate algo-
rithms. They assume that when a switch’s forwarding table
is full, new flows will simply be dropped. Huang et al. [29]
consider splittable flows, each of which is allowed to follow
multiple paths to improve network utilization. They study
joint optimization of rule placement and traffic engineering
for QoS provisioning. Since this paper assumes that each flow
is split into several sub-flows, the rule multiplexing scheme
is only applied among these sub-flows so as to save the flow
entries. However, when applied to the unsplittable flows, this
scheme can not help to reduce the flow entries. Our paper
considers unsplittable flows, such as TCP flows whose window
adaptation may be adversely affected if packets of the same
flow follow different paths.

VII. CONCLUSION

In this paper, we have designed a novel hybrid switching
mechanism, which integrates traditional switching and SDN
switching for the purpose of achieving both scalability and
optimal performance. Moreover, a hybrid path deployment
method has been presented to reduce the required forwarding
rules. As a case of applications, load-balancing re-routing is
also studied. Testing and numerical evaluation results demon-
strate the superior performance of hybrid switching when
comparing with the DevoFlow solution.

APPENDIX

PROOF OF LEMMA 2

We give two famous lemmas for probability analysis.
Lemma 4 (Chernoff Bound): Given n independent vari-

ables: x1, x2, . . . , xn, where ∀xi ∈ [0, 1]. Let μ = E[
∑n

i=1 xi].

Then, Pr
[

n∑

i=1

xi ≥ (1 + ε)μ
]

≤ e
−ε2μ
2+ε , where ε is an arbitrar-

ily positive value.
Lemma 5 (Union Bound): Given a countable set of n

events: A1, A2, . . . , An, each events Ai happens with possi-

bility Pr(Ai). Then, Pr(A1 ∪ A2 ∪ . . . ∪ An) ≤
n∑

i=1

Pr(Ai).

Proof: We first bound the probability with which the link
capacities will be violated. Note that, after the linear program
procedure in step 1 of the RDSR algorithm, we derive a
fractional solution ỹp

f and an optimal result λ̃ for the relaxed
LBR-FT problem. Using the randomized rounding method, for

each flow f ∈ Π, only one of the paths in P(f) will be chosen
as its route path. Thus, the traffic load of link e from flow f
could be defined as a random variable xf,e, which equals r(f)
with possibility

∑
e∈p:p∈P(f) ỹp

f .
Definition 1: For each sampled flow f ∈ Π and each link

e ∈ E, a random variable xf,e is defined as:

xf,e =

{
r(f), with probability of

∑

e∈p:p∈P(f)
ỹp

f

0, otherwise.
(4)

According to the definition, xf1,e, xf2,e, . . . are mutually
independent. The expected traffic load on link e is:

E

⎡

⎣
∑

f∈Π

xf,e

⎤

⎦ =
∑

f∈Π

[xf,e]

=
∑

f∈Π

∑

e∈p:p∈P(f)

ỹp
f · r(f)

≤ λ̃c(e) − g(e) ≤ λ̃c(e) (5)

Combining Eq. (5) and the definition of α in Eq. (3),
we have

⎧
⎪⎪⎨

⎪⎪⎩

xf,e · α
λ̃c(e)

∈ [0, 1]

E

[
∑

f∈Π

xf,e · α
λ̃ · c(e)

]

≤ α.
(6)

Then, by applying Lemma 4, assume that ρ is a arbitrary
positive value. It follows

Pr

⎡

⎣
∑

f∈Π

xf,e · α
λ̃ · c(e) ≤ (1 + ρ) · α

⎤

⎦ ≤ e
−ρ2·α
2+ρ

⇔ Pr

⎡

⎣
∑

f∈Π

xf,e

λ̃ · c(e)
≤ (1 + ρ)

⎤

⎦ ≤ e
−ρ2·α
2+ρ (7)

Now, we would assume that

Pr

⎡

⎣
∑

f∈Π

xf,e

λ̃ · c(e) ≤ (1 + ρ)

⎤

⎦ ≤ e
−ρ2·α
2+ρ ≤ F

n2
(8)

where F is the function of network-related variables (such as
the number of switches n, etc.) and F → 0 when the network
grows.

By solving Eq. (8), we have the following result:

ρ ≥
log n2

F +
√

log2 n2

F + 8α log n2

F
2α

, n ≥ 2 (9)

Set F = 1
n2 . Eq. (8) is transformed into:

Pr

⎡

⎣
∑

f∈Π

xf,e

λ̃ · c(e)
≤ (1 + ρ)

⎤

⎦≤ 1
n4

, where ρ ≥ 4 logn

α
+2

(10)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:25:02 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ACHIEVING HIGH SCALABILITY THROUGH HS IN SDN 631

By applying Lemma 5, we have,

Pr

⎡

⎣
∨

e∈E

{
∑

f∈Π

xf,e

λ̃ · c(e)
+

g(e)

λ̃ · c(e)
} ≤ (2 + ρ)

⎤

⎦

≤ Pr

⎡

⎣
∨

e∈E

∑

f∈Π

xf,e

λ̃ · c(e)
≤ (1 + ρ)

⎤

⎦

≤
∑

e∈E

Pr

⎡

⎣
∑

f∈Π

xf,e

λ̃ · c(e)
≤ (1 + ρ)

⎤

⎦

≤ n2 · 1
n4

=
1
n2

, ρ ≥ 4 logn

α
+ 2 (11)

Note that the third inequality holds, because in a network
of n nodes, the number of links would not exceed n2. The
approximate factor of our algorithm is ρ + 2 = 4 log n

α + 4. �

REFERENCES

[1] H. Xu, H. Huang, S. Chen, and G. Zhao, “Scalable software-defined
networking through hybrid switching,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), May 2017, pp. 1–9.

[2] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[3] S. Jain et al., “B4: Experience with a globally-deployed software
defined WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 3–14, 2013.

[4] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering
in software defined networks,” in Proc. IEEE INFOCOM, Apr. 2013,
pp. 2211–2219.

[5] A. R. Curtis et al., “DevoFlow: Scaling flow management for high-
performance networks,” Comput. Commun. Rev., vol. 41, no. 4,
pp. 254–265, Aug. 2011.

[6] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “On the effect
of forwarding table size on SDN network utilization,” in Proc. IEEE
INFOCOM, Apr./May 2014, pp. 1734–1742.

[7] X. Jin et al., “Dynamic scheduling of network updates,” in Proc. ACM
Conf. SIGCOMM, 2014, pp. 539–550.

[8] D. Li, Y. Shang, and C. Chen, “Software defined green data center net-
work with exclusive routing,” in Proc. IEEE INFOCOM, Apr./May 2014,
pp. 1743–1751.

[9] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash table
lookup using extended bloom filter: An aid to network processing,” ACM
SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, pp. 181–192, 2005.

[10] J. Moy, OSPF Version 2, document RFC 2328, 1997.
[11] Y. Rekhter, T. Li, and S. Hares, A Border Gateway Protocol 4 (BGP-4),

document RFC 1771, 2005.
[12] K. Kannan and S. Banerjee, “Compact TCAM: Flow entry compaction

in TCAM for power aware SDN,” in Proc. Int. Conf. Distrib. Comput.
Netw., 2013, pp. 439–444.

[13] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements & analysis,” in Proc. 9th
ACM SIGCOMM Conf. Internet Meas. Conf., 2009, pp. 202–208.

[14] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proc. ACM SIGCOMM
Conf. Appl., Technol., Archit., Protocols Comput. Commun., 2012,
pp. 323–334.

[15] OpenFlow Switch Specification-Version 1.4.0, Open Netw. Found., 2013.
[16] T. Li, S. Chen, and Y. Ling, “Fast and compact per-flow traffic measure-

ment through randomized counter sharing,” in Proc. IEEE INFOCOM,
Apr. 2011, pp. 1799–1807.

[17] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
in Proc. IEEE INFOCOM, Apr. 2011, pp. 1629–1637.

[18] H. Xu et al., “Incremental deployment and throughput maximization
routing for a hybrid SDN,” IEEE/ACM Trans. Netw., vol. 25, no. 3,
pp. 1861–1875, Jun. 2017.

[19] S. Even, A. Itai, and A. Shamir, “On the complexity of time table
and multi-commodity flow problems,” in Proc. IEEE 16th Annu. Symp.
Found. Comput. Sci, Oct. 1975, pp. 184–193.

[20] C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” in ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 15–26, 2013.

[21] P. Raghavan and C. D. Tompson, “Randomized rounding: A technique
for provably good algorithms and algorithmic proofs,” Combinatorica,
vol. 7, no. 4, pp. 365–374, 1987.

[22] The Mininet Platform. Accessed: May 2016. [Online]. Available:
http://mininet.org/

[23] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“HyperX: Topology, routing, and packaging of efficient large-scale
networks,” in Proc. Conf. High Perform. Comput. Netw., Storage Anal.,
2009, pp. 1–11.

[24] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

[25] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based server load
balancing gone wild,” Hot-ICE, vol. 11, p. 12, Mar. 2011.

[26] N. Handigol, S. Seetharaman, N. McKeown, and R. Johari, “Plug-n-
serve: Load-balancing Web traffic using openFlow,” ACM SIGCOMM
Demo, vol. 4, no. 5, pp. 1–2, 2009.

[27] M. Rifai et al., “Too many SDN rules? Compress them with MINNIE,”
in Proc. IEEE Global Commun. Conf., Dec. 2015, pp. 1–7.

[28] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
NSDI, vol. 10. 2010, p. 19.

[29] H. Huang, S. Guo, P. Li, B. Ye, and I. Stojmenovic, “Joint optimization
of rule placement and traffic engineering for QoS provisioning in
software defined network,” IEEE Trans. Comput., vol. 64, no. 12,
pp. 3488–3499, Dec. 2015.

Hongli Xu (M’08) received the B.S. degree in
computer science and the Ph.D. degree in computer
software and theory from the University of Science
and Technology of China in 2002 and 2007, respec-
tively. He is currently an Associate Professor with
the School of Computer Science and Technology,
University of Science and Technology of China.
He has authored over 60 papers and holds about
20 patents. His main research interest is software-
defined networks, cooperative communication, and
vehicular ad hoc network.

He Huang (M’13) received the Ph.D. degree from
the Department of Computer Science and Tech-
nology, University of Science and Technology of
China, in 2011. He is currently an Associate Pro-
fessor with the School of Computer Science and
Technology, Soochow University, China. His current
research interests include crowdsourcing, software-
defined networking, privacy preserving for wireless
networks, and algorithmic game theory.

Shigang Chen (A’03–M’04–SM’12–F’16) received
the B.S. degree from the University of Science
and Technology of China in 1993, and the
M.S. and Ph.D. degrees from the University of
Illinois at Urbana–Champaign in 1996 and 1999,
respectively, all in computer science. He was with
Cisco Systems for three years. He joined the Univer-
sity of Florida in 2002. He was a CTO with Chance
Media Inc. during 2012–2014. He is currently a
Professor with the Department of Computer and
Information Science and Engineering, University of

Florida. He has authored over 160 peer-reviewed journal/conference papers.
He holds 12 U.S. patents. His research interests include computer networks,
Internet security, wireless communications, and distributed computing. He
received the IEEE Communications Society Best Tutorial Paper Award and
the NSF CAREER Award. He was an Associate Editor of the IEEE/ACM
TRANSACTIONS ON NETWORKING, the IEEE TRANSACTIONS ON VEHICU-
LAR TECHNOLOGY, and a number of other journals. He served in various
chair positions or committee members for numerous conferences. He is
an ACM Distinguished Member and a Distinguished Lecturer of the IEEE
Communication Society.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:25:02 UTC from IEEE Xplore. Restrictions apply.

632 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

Gongming Zhao is currently pursuing the master’s
degree in computer science with the University of
Science and Technology of China. His main research
interest is software-defined networks.

Liusheng Huang received the M.S. degree in com-
puter science from the University of Science and
Technology of China in 1988. He is currently a
Senior Professor and a Ph.D. Supervisor of the
School of Computer Science and Technology, Uni-
versity of Science and Technology of China. He has
authored six books and over 300 journal/conference
papers. His research interests are in the areas of
Internet of Things, vehicular ad hoc network, infor-
mation security, and distributed computing.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:25:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

